
## **QPSK - Quadrature Phase Shift Keying**

• Four different phase states in one symbol period

## • **Two** bits of information in each symbol Phase: $0 \pi/2 \pi 3\pi/2 \rightarrow \text{possible phase values}$ Symbol: 00 01 11 10

Note that we choose binary representations so an error between two adjacent points in the constellation only results in a single bit error

• For example, decoding a phase to be  $\pi$  instead of  $\pi/2$  will result in a "11" when it should have been "01", only one bit in error.



- Now we have two basis functions
- $E_s = 2 E_b$  since 2 bits are transmitted per symbol
- I = in-phase component from  $s_I(t)$ .
- Q = quadrature component that is  $s_Q(t)$ .

## **QPSK RF Signal BW**

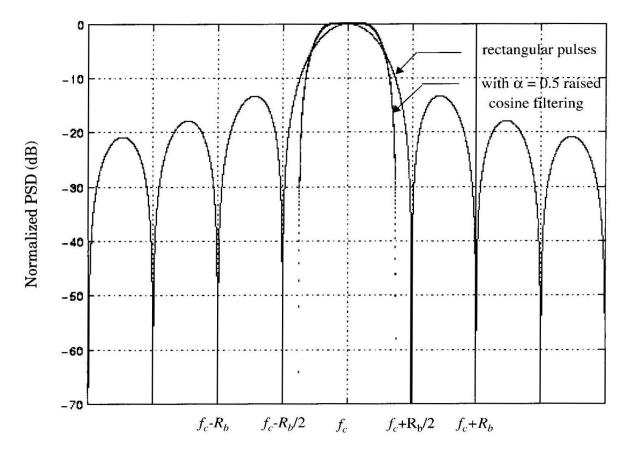
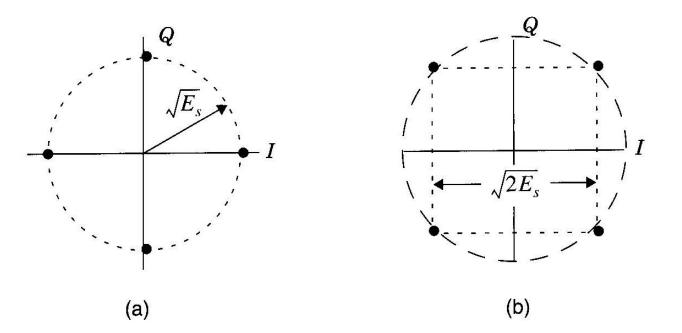



Figure 6.27 Power spectral density of a QPSK signal.

- null-to-null RF BW =  $R_b = 2R_s$  (2 bits / one symbol time) = 2 /  $T_s$
- double the BW efficiency of BPSK → or twice the data rate in same signal BW


 BER is once again related to the distance between constellation points.

Prob{bit error} 
$$\leq Q\left(\frac{d}{\sqrt{2N_0}}\right)$$

*d* is distance between nearest constellation points.

Here 
$$d = \sqrt{2E_s}$$
 so Prob{bit error}  $\leq Q\left(\sqrt{\frac{E_s}{N_0}}\right)$ 

But 
$$E_s = 2 E_b$$
 so Prob{bit error}  $\leq Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$ 



**Figure 6.26** (a) QPSK constellation where the carrier phases are 0,  $\pi/2$ ,  $\pi$ ,  $3\pi/2$ ; (b) QPSK constellation where the carrier phases are  $\pi/4$ ,  $3\pi/4$ ,  $5\pi/4$ ,  $7\pi/4$ .

## **QPSK** Transmission and Detection Techniques

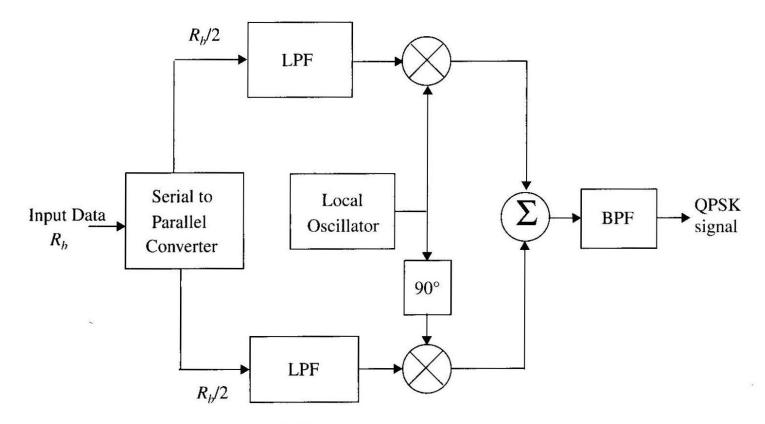



Figure 6.28 Block diagram of a QPSK transmitter.

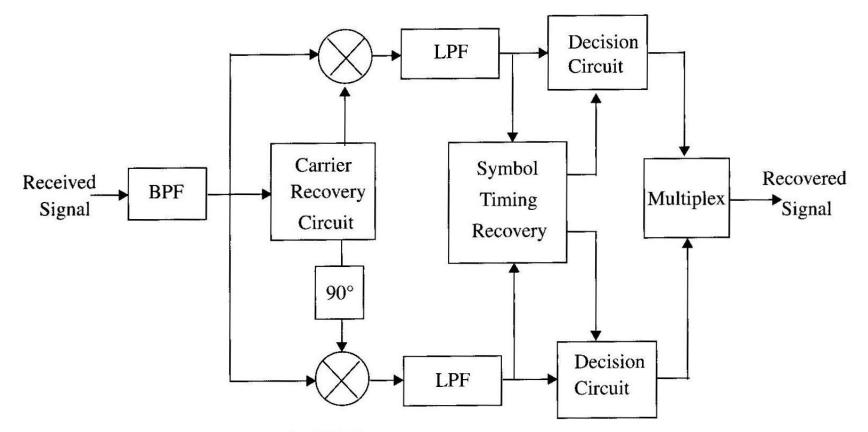



Figure 6.29 Block diagram of a QPSK receiver.

QPSK or Quadrature Phase Shift Keying, involves the splitting of a data stream  $m_k(t) = m_0, m_1, m_2, \ldots$ , into an in-phase stream  $m_I(t) = m_0, m_2, m_4, \ldots$  and a quadrature stream  $m_Q(t) = m_1, m_3, m_5, \ldots$  Both the streams have half the bit rate of the data stream  $m_k(t)$ , and modulate the cosine and sine functions of a carrier wave simultaneously. As a result, phase changes across intervals of  $2T_b$ , where  $T_b$  is the time interval of a single bit (the  $m_k(t)$ s). The phase transitions can be as large as  $\pm \pi$  as shown in Figure 1.

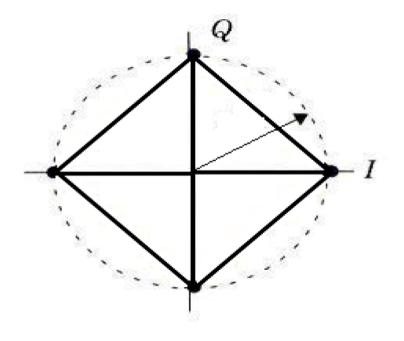



Figure 1: The figure shows a QPSK constellation. The dark black lines show all possible phase changes.

Sudden phase reversals of  $\pm \pi$  can throw the amplifiers into saturation. As shown in Figure 2 [1], the phase reversals of  $\pm \pi$  cause the envelope to go to zero momentarily. This may make us susceptible to *non-linearities* in amplifier circuitry. The above may be prevented using linear amplifiers but they are more *expensive and power consuming*. A solution to the above mentioned problem is the use of OQPSK.

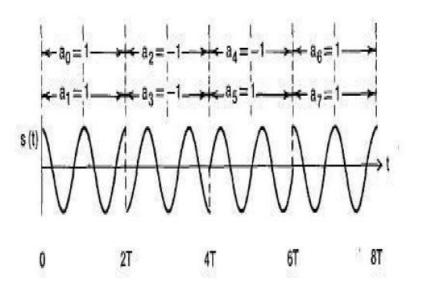
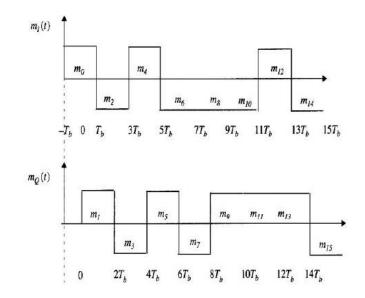
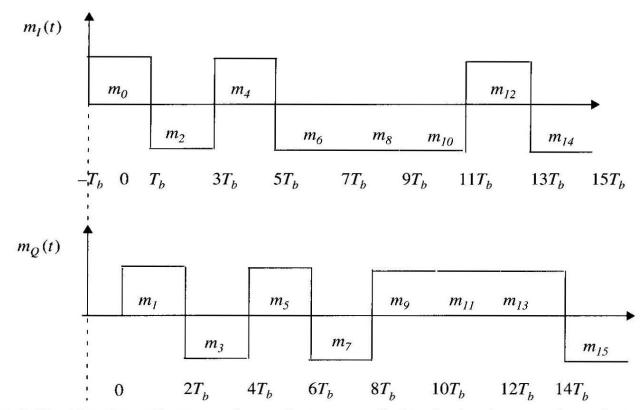
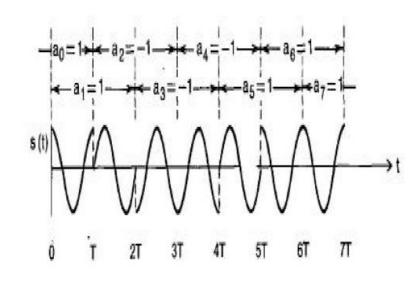



Figure 2: The figure shows a QPSK waveform. As is seen across the dotted line corresponding to a phase shift of  $\pi$ , the envelope reduces to zero temporarily.

OQPSK modulation is such that phase transitions about the origin are avoided. The scheme is used in IS-95 handsets. In OQPSK the pulse streams  $m_I(t) = m_0, m_2, m_4, \ldots$  and  $m_Q(t) = m_1, m_3, m_5, \ldots$  are offset in alignment, in other words are staggered, by one bit period (half a symbol period). Figure 3 [2], shows the

staggering of the data streams in time. Figure 4 [1], shows the OQPSK waveform undergoing a phase shift of  $\pm \pi/2$ . The result of *limiting* the phase shifts to  $\pm \pi/2$  is that the envelope will not go to zero as it does with QPSK.



Figure 3: The figure shows the staggering of the in phase and quadrature modulated data streams in OQPSK. The staggering restricts the phase changes to  $\pm 90$  as shown in Figure 4.

the maximum phase shift of the transmitted signal at any given time is limited to ± 90°



**Figure 6.30** The time offset waveforms that are applied to the in-phase and quadrature arms of an OQPSK modulator. Notice that a half-symbol offset is used.

In OQPSK, the phase transitions take place every  $T_b$  seconds. In QPSK the transitions take place every  $2T_b$  seconds.



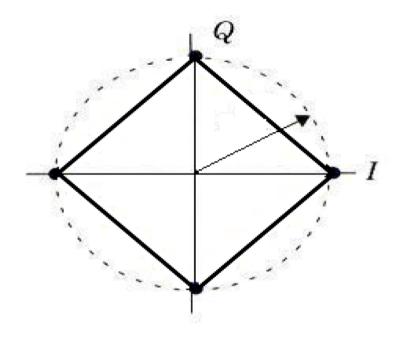



Figure 4: The figure shows a QPSK waveform. As is seen across the dotted lines the phase changes are of  $\pm \pi/2$ .

Figure 5: The figure shows a OQPSK constellation. The dark black lines show all possible phase changes. The signal space is the same as in the case of QPSK, though phase changes are restricted to  $\pm 90$ .

The spectrum of an OQPSK signal is identical to that of a QPSK signal, hence both signals occupy the same bandwidth